AdvAE and FlowAE: Sampling Arbitrary Latent Variable Distributions

Srivatsan Sridhar Varun Srivastava

Deep Generative Models (CS 236) - Stanford University

Motivation

- In a VAE, latent variable z is from a simple (usually Gaussian) prior $p_{\theta}(z)$
- VAE training minimizes KL divergence of posterior $q_{\phi}(z|x)$ with prior $p_{\theta}(z)$
- Simple prior may be less expressive, and may not match the data distribution

Goals of the Project

- To train an autoencoder to learn an arbitrarily **distributed** latent variable $z = f_{\theta}(x)$
- To sample from the arbitrary latent variable distribution to generate samples $\mathbf{x} = f_{\phi}(\mathbf{z})$
- To estimate the density p(z) of the arbitrary latent variable distribution
- To observe characteristics of the arbitrarily distributed latent space

Training and Experiments

- The autoencoder is first trained with a reconstruction loss, and then fixed
- FlowAE/AdvAE generator is trained next
- Compare MNIST samples from a standard VAE, AAE, FlowAE and AdvAE
- Frechet Classifier Distance using last layer activations of an MNIST classifier
- Visualize the latent space using t-SNE

Previous Works

Adversarial Autoencoder (AAE)

- Adversarial training to match the posterior of the latent variable with a known prior
- Trains the autoencoder on reconstruction loss plus adversarial loss
- Latent variable sampled from known prior

Our Methods - AdvAE and FlowAE

1. Autoencoder (AE)

- Encoder $\mathbf{z} = f_{\theta}(\mathbf{x})$ and Decoder $\mathbf{x} = f_{\phi}(\mathbf{z})$
- Different from VAE which learns parameterized distributions $p_{\theta}(z|x)$ and $q_{\phi}(x|z)$

$$\mathcal{L}_{AE}(x,\hat{x}) = x \log(\hat{x}) - (1-x) \log(1-\hat{x})$$

2. Flow Network + AE (FlowAE)

- Flow network $F(z_0)$ generates latent variable z
- Maximum likelihood on $z = f_{\theta}(x)$ from real data

$$\mathcal{L}_{F}(z) = -\log \mathcal{N}(F^{-1}(z); 0, I) + \log \left| \frac{\partial f^{-1}(z)}{\partial z'} \right|$$

3. Adversarially trained AE (AdvAE)

- Generator $G(z_0)$ generates latent variable z
- Discriminator D(z) classifies $z = G(z_0)$ from generator and $z = f_{\theta}(x)$ from real data
- Alternate training of discriminator and generator using WGAN-GP loss

$$\mathcal{L}_D = -D(f_{\theta}(\mathbf{x})) + D(G(\mathbf{z}_0)) + \lambda(\|\nabla D\|_2 - 1)^2$$

$$\mathcal{L}_G = -D(G(\mathbf{z}_0))$$

Results

Figure: VAE

Figure: t-SNE on latent space of VAE (Perplexity: 70)

Figure: AdvAE

Figure: FlowAE

Figure: t-SNE on latent space of FlowAE, AdvAE (Perplexity: 70)

Results

Frechet Classifier Distance Scores

Model	FCD
Real Data	0.2
FlowAE	4.65
AdvAE	6.03
AAE	6.09
VAE	8.12

Conclusion

Decoupling the tasks of sampling the latent space and learning a flexible class of distributions over the latent space leads to both increase in sample quality, and simplified training procedures (in FlowAE). The t-SNE plots suggest that the latent space can be clustered by its labels.

Further Work

- Convolutional Autoencoders on CIFAR-10
- Convolutional Generators and flow networks for the latent space

References

- [1] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial autoencoders. 2015.
- [2] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. 2015.
- [3] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. 2008.
- [4] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and Alexander Lerchner. Understanding disentangling in β -vae, 2018.