
Indian Institute of Technology, Bombay

Communication and Randomness Lower

Bounds for Secure Multiparty

Computation

Srivatsan Sridhar

Roll No. 150070005

B.Tech. Project Report

under the guidance of

Prof. Sibi Raj Pillai

(Electrical Engineering, IIT Bombay)

Prof. Manoj Prabhakaran

(Computer Science and Engineering, IIT Bombay)

Prof. Vinod Prabhakaran

(School of Technology and Computer Science, TIFR)

May 2019

Abstract

Three-party secure computation is a problem wherein two mutually distrusting parties,

Alice and Bob, wish to ”securely” compute a function of their private data, with the

help of a third party Charlie. Here, ”securely” means that Alice and Bob do not learn

the private data of each other, and Charlie does not learn their private data, apart from

the function value. Secure multiparty computation (as considered in this project) is

a generalization of this setting where we have k mutually distrusting users in place of

Alice and Bob. We are interested in finding the minimum number of bits of messages

exchanged between any two users (communication) and the minimum number of bits of

randomness used for a secure protocol.

For three-party secure computation, Feige, Kilian and Naor (FKN) gave a general pro-

tocol for securely computing any function computable in non-deterministic logspace.

These protocols extend to multiparty for some functions. However, it is known that

these protocols are not optimal in terms of the amount of communication and ran-

domness required, in general. Several information-theoretic methods have been used to

derive lower bounds on the communication and randomness required. These bounds are

also not always tight for general functions.

In this project, we consider three-party secure computation of a specific function, that

is AND of two bits. It is observed that the randomness lower bound derived for this

function is lower than the randomness used by the FKN protocol. However, we prove

that in a non-interactive setting (where all parties send a single round of messages),

the FKN protocol is optimal in the cardinality of the set of messages and randomness

elements. In particular, we show that private randomization by the parties does not

decrease the amount of common randomness used. We will also derive a bound on the

entropy of the common randomness when private randomness is allowed. Further, we

will relate this problem with other problems such as distribution design, and conclude

by providing possible directions in which these bounds can be extended.

Contents

Abstract i

1 Introduction 1

1.1 Secure Computation - Introduction . 1

1.2 Three-Party Secure Computation - Problem Definition 1

1.3 The FKN Protocol . 3

1.4 Multiparty Secure Computation - Extending the FKN Protocol 4

1.5 Applications of Secure Multiparty Computation 5

2 Literature Study 7

2.1 Existence of Secure Computation Protocols 7

2.2 FKN Protocol for Secure Computation of AND 8

2.3 Information Theoretic Bounds for General Functions 9

2.4 Randomness Lower Bound for Non-interactive Secure Computation of
AND Without Private Randomness . 10

2.5 Example of a Protocol with Private Randomness 11

3 Randomness Lower Bounds Derived in This Project 12

3.1 Randomness Lower Bound When Only One Party Uses Private Randomness 12

3.2 Randomness Lower Bound When Both Parties Use Private Randomness . 13

3.3 Entropy Lower Bound When Both Parties Use Private Randomness . . . 18

3.4 Relation with Distribution Design . 21

4 Conclusion and Future Work 23

ii

Chapter 1

Introduction

1.1 Secure Computation - Introduction

Information security is a major concern in today’s world of communication. One impor-

tant security problem, that is encrypting data to prevent eavesdroppers from gathering

any information about the data, has been well studied. Such a problem is encountered

in any public communication channel, and many security protocols have been developed,

which are either perfectly secure or more often, computationally secure.

Here, we consider a different problem, where we require a third party to compute a

function of our private data. That is, we want the third party (whom we do not trust)

to receive enough information to be able to compute the required function, but to not

learn anything more about the private data. This could arise because there are multiple

parties, who do not individually have all the data required to compute the function,

and do not trust each other (most common scenario). This could also happen in the

case where the party with the private data is not computationally powerful to compute

the function. The latter may be relevant for security constraints in machine learning

based applications for smartphones where the computation is done on the server. More

applications of this problem will be mentioned in Section 1.5.

1.2 Three-Party Secure Computation - Problem Definition

Referring to Figure 1.1, the three-party secure computation model can be described as

follows. Alice (A) and Bob (B) respectively have private data (inputs) X and Y , drawn

from finite alphabets X and Y according to a joint distribution pXY (x, y). Charlie (C)

must compute Z = f(x, y) where f : X ×Y → Z is a function which takes values in the

1

Contents 2

finite alphabet Z. We consider here that the function to be computed is a deterministic

function of x and y.

Figure 1.1: Description of the three-party secure computation model

Each pair of users is connected by a communication link, that is private from the other

user. The messages exchanged between each pair of users are denoted as Mij which

belong to finite alphabets Mij for i, j = 1, 2, 3. Here Mij contains both messages sent

from i to j and from j to i. A general secure computation protocol can run over multiple

rounds, where the message sent by each user in a round has a distribution conditioned

on its inputs (X or Y) and the messages it has seen so far. In the final round, Charlie

outputs Z. The protocol is designed so as to terminate with probability 1. Here, each

user can also sample its own private randomness, and hence the messages are specified

by a distribution, and not a function. Such protocols that run over multiple rounds

may be called interactive protocols. In this project however, only non-interactive or

”one-shot” protocols are considered. In a general one-shot protocol, Alice first sends the

message M12 to Bob. Then Alice and Bob send messages M13 and M23 respectively to

Charlie. Charlie computes Z using M13 and M23.

A valid protocol for three-party secure computation must satisfy the following correct-

ness and secrecy conditions :

• Correctness: Charlie should compute the correct value of Z = f(X,Y) where X

and Y are the values of Alice’s and Bob’s inputs.

• Secrecy against Alice: Alice should not learn anything more about Y and Z

than what is revealed by X, i.e. (Y,Z) are independent of (M12,M13) given X.

• Secrecy against Bob: Bob should not learn anything more about X and Z than

what is revealed by Y , i.e. (X,Z) are independent of (M12,M23) given Y .

• Secrecy against Charlie: Charlie should not learn anything more about X and

Y than what is revealed by Z, i.e. (X,Y) are independent of (M13,M23) given Z.

Contents 3

This model of security is known as the ”honest-but-curious” model, where each party

follows the protocol honestly, but may be curious to know the private data of other par-

ties. In the above conditions, we assume that we require perfectly correct and perfectly

secure computation, as against asymptotically correct and secure computation.

Our aim is to find the minimum amount of communication and randomness required

for a perfectly secure protocol. The amount of communication is specified using the

entropy of the messages H(Mij) or using the cardinality of the message alphabets

|Mij | where we know that log2 |Mij | ≥ H(Mij). The amount of randomness can be

defined as the additional entropy resulting from the protocol, given the inputs, i.e.

H(M12,M13,M23, Z|X,Y).

1.3 The FKN Protocol

Feige, Kilian and Naor in [1], proposed a general protocol for secure computation of any

function that is computable in nondeterministic logspace. This protocol is an example

of a non-interactive or one-shot protocol. This protocol is also known as a private

simultaneous messages (PSM) protocol. In the notation of the problem described above,

this protocol can be given by the following steps:

Protocol 1.1. FKN Protocol for a general function

1. Alice chooses M12 ∈ M12 according to a distribution pM12(m12) and sends it to

Bob privately. M12 is not revealed to Charlie.

2. Alice sends M13 = m13(X,M12), a deterministic function of X and M12, to Char-

lie. M13 is not revealed to Bob.

3. Bob sends M23 = m23(Y,M12), a deterministic function of Y and M12, to Charlie.

M23 is not revealed to Alice.

4. Charlie computes Z = f(X,Y) using M13 and M23, as Z = f̂(M13,M23).

This protocol satisfies the conditions for a perfectly secure and correct protocol if the

following conditions are met :

• Correctness: f̂(m13(x,m12),m23(y,m12)) = f(x, y) ∀x ∈ X , y ∈ Y,m12 ∈ M12.

This, in turn, is possible iff supp(M13,M23|X = x, Y = y) ∩ supp(M13,M23|X =

x′, Y = y′) = Φ whenever f(x, y) 6= f(x′, y′). (supp(U) denotes the set of values

of the random variable U with non-zero probability)

Contents 4

• Secrecy against Alice: satisfied since Alice does not receive any message.

• Secrecy against Bob: satisfied since M12 is chosen independent of X.

• Secrecy against Charlie: for all pairs of inputs (x1, y1) and (x2, y2) such that

f(x1, y1) = f(x2, y2), the distributions of the messages (m13(x1,M),m23(y1,M))

and (m13(x2,M),m23(y2,M)) are identical, where M is chosen randomly from

M12.

In this protocol, since M12 is independent of both X and Y , and is available to both par-

ties, we call it the common randomness. Both parties do not use any private randomness

since M13 and M23 are given by deterministic functions. Thus the amount of random-

ness for such a protocol is given by H(M12,M13,M23, Z|X,Y) = H(M12) or it can be

given by the cardinality |M12|. Note that this protocol can be equivalently described

by saying that an external ”dealer” picks the common randomness M12 independent of

the inputs X and Y , and gives it to Alice and Bob. This can be used to easily extend

such a protocol to the multiparty setting.

1.4 Multiparty Secure Computation - Extending the FKN

Protocol

In general for multiparty computation, all parties can communicate with each other,

and security attacks may involve collusion of several parties to find the private data of

other parties, using the messages they have seen and their own private data. In such a

scenario, it is known that perfectly secure computation is possible when less than half of

the parties collude, if there is a private communication link between any pair of parties,

and all parties have access to private randomness. In this project, such general protocols

are not considered, but a simple extension to the FKN Protocol is considered.

We consider the multiparty setting where there are k parties denoted by Ai, each having

their private data Xi ∈ Xi for i = 1, ..., k. Charlie (C) must compute a function Z =

f(X1, ..., Xk). The FKN protocol can be extended in this manner, as shown in figure

1.2 :

Protocol 1.2. FKN protocol for multiparty secure computation

1. A shared randomness M0 drawn from a setM0 according to a distribution pM0(m0),

independent of X1, . . . , Xk, is given to all parties Ai. M0 is not revealed to Charlie.

In this protocol, the amount of randomness is given by H(M0)

Contents 5

2. Each party Ai sends Mi = mi(Xi,M0), a deterministic function of its input and

the shared randomness, to Charlie. Mi is not revealed to parties Aj with j 6= i.

3. Charlie computes Z = f(X1, ..., Xk) as Z = f̂(M1, ...,Mk)

Figure 1.2: Description of the FKN protocol for multiparty secure computation

1.5 Applications of Secure Multiparty Computation

The problem of secure multiparty computation has interesting applications, some of

which are discussed in [2]:

1. Secure Audio Teleconferencing: This was one of the earliest applications of

secure MPC, studied in [3] and an improved solution proposed in [1]. In secure

audio teleconferencing, three or more parties talk together on a telephone line. A

bridge is required to facilitate this, whose role is to receive speech signals from all

the parties, select the active signals (those that contain speech), and send to all

parties the sum of the active signals. Alternatively, the bridge may select only the

signal with maximum amplitude and send it to all parties. When the conversation

needs to be encrypted, the bridge must be able to decrypt and encrypt the signals

to perform its function, thus learning the signal itself. This is a problem if the

bridge is not a trusted entity. Solutions proposed to this problem in [3] and [1]

have the bridge securely compute either the sum or the max of the signals, without

learning anything else about the signals.

2. Secure Auctions: In an auction, each buying party bids an amount for a certain

product, while the selling party computes the maximum of these bids to decide who

wins the auction. Each party has a maximal amount that they would pay, such

that they stop bidding when the bid goes higher than that. This is their input.

The parties run an interactive auction protocol so that the seller can find out the

party with the highest maximal amount. For an honest auction, we require that

this maximal amount be hidden from the seller and the other buyers. Otherwise

the seller could force the winning party to pay an amount as high as his maximal

Contents 6

amount, or another buyer could win the auction by paying an amount barely

higher than the other parties’ maximal amount. Thus this is an example of secure

multiparty computation.

3. Benchmark Analysis: Several companies may be interested to have a third party

evaluate their performance with respect to their competitors. Each company has

certain parameters such as their profits, productivity, salaries etc. as inputs and

wish to keep these private from the other companies and the third party. This is

also a scenario for secure MPC.

4. Machine Learning: A more recent application is where an organization uses data

such as content in emails, movies watched, usage patterns, images etc. to train

machine learning models for applications such as spam filters, movie recommen-

dation and image recognition systems. Such data is collected from a large number

of users. Recently, people are becoming concerned about the security threat of

allowing these organizations to access one’s personal information. The user wants

his/her data to be private, while the organization wants to train accurately on the

data. Here, the function to be computed could be a complex feature extraction

from the data.

Chapter 2

Literature Study

2.1 Existence of Secure Computation Protocols

Three-party Secure Computation was studied by Feige, Kilian and Naor in [1]. The main

results of this work were towards showing that any function can be computed securely

in the model described in that work. Further they showed that for functions computable

in nondeterministic logspace, there exist efficient secure computation protocols.

The first result from [1] shows that any function f(x, y) can be computed securely.

However, the amount of communication and randomness may be exponential. The

result is shown for functions of the form f : {0, 1}n × {0, 1}n → {0, 1}. However it

is still general because any other finite input and output alphabets can be coded as

binary vectors, and each bit of the output can be computed as a separate binary output

function.

This result is shown by constructing a protocol. The bipartite graph representing f is

considered, where the vertices in one partition correspond to values of X in {0, 1}n and

the vertices in the other partition correspond to values of Y in {0, 1}n. There is an edge

between the values x and y iff f(x, y) = 1. The protocol draws a common random string

of n + 2n bits, and transforms this graph based on the common string. 2n bits of the

common randomness are called ry associated with each vertex y. All edges incident on

vertex y are complemented if ry = 1. The remaining n bits are denoted by π and used

to define a cyclic permutation of the vertices corresponding to Y , i.e. y is permuted to

y − π. Alice and Bob send the following messages to Charlie:

M13 = m13(y, π, r) = (f(a, π)⊕ rπ, f(a, π + 1)⊕ rπ+1, . . . , f(a, π − 1)⊕ rπ−1) (2.1)

M23 = m23(y, π, r) = (y − π mod 2n, ry) (2.2)

7

Contents 8

Charlie computes Z by choosing the (y− π mod 2n)th entry in M13 and complementing

it iff ry is 1.

This protocol can be verified to be correct and secure with reference to the conditions

given in Section 1.3. The amount of communication used is 2n bits for M13 and n + 1

bits for M23. The amount of randomness used (H(M12)) is 2n+n bits. Thus, these may

be exponential in the input length n, in general.

The second result shows that for any function f : {0, 1}n × {0, 1}n → {0, 1} that can

be computed in nondeterministic logspace, there exists a secure computation protocol

in which the amount of communication and randomness, and all the computations are

polynomial in n. A decision problem is said to be computable in nondeterministic

logspace if it can be computed by a nondeterministic Turing machine using an amount

of memory that is logarithmic in n. Again, a general protocol is constructed in [1].

2.2 FKN Protocol for Secure Computation of AND

Another important result from [1] is the construction of a non-interactive multiparty

secure computation protocol for the logical AND of k bits. There are k parties, each

having an input Xi ∈ {0, 1}. Charlie has to compute Z = X1 ∧ X2 ∧ . . . ∧ Xk. The

protocol is described below, using the notation defined in Section 1.4

Protocol 2.1. FKN protocol for multiparty secure computation of AND

1. The shared randomness M0 consists of a prime p > k, a number r such that

0 < r < p, and r1, . . . , rk such that
∑k

i=1 ri = 0 mod p

2. Each party sends Mi = r(1− xi) + ri mod p if its input is xi.

3. Charlie outputs Z = 1 iff
∑k

i=1Mi = 0 mod p.

The common randomness includes k numbers which sum to 0 mod p (k−1 of them can be

chosen independently), and one non-zero number mod p. Thus the amount of common

randomness is (k − 1) log2 p + k log2(p − 1) bits. The communication by each party is

log2 p bits. Alternatively, we can look at the cardinality of the alphabets of the common

randomness and messages, and thus |M0| = pk−1(p−1)k and |Mi| = p for this protocol.

By Betrand’s postulate, there will exist a prime p such that k < p < 2k. Therefore the

amount of randomness is O(k log k) bits, and the amount of communication on each

link is O(k) bits.

For the three-party setup (with only two users Alice and Charlie), this protocol can be

rephrased in the following manner, using the notation in Section 1.3:

Contents 9

Protocol 2.2. FKN protocol for three-party secure computation of AND

1. M12 is a randomly and uniformly picked permutation of (0,1,2) - say (α, β, γ).

This is sent by Alice to Bob.

2. M13 = α if X = 1 and β if X = 0. Alice sends M13 to Charlie.

3. M23 = α if Y = 1 and γ if Y = 0. Bob sends M23 to Charlie.

4. Charlie computes Z = 1 if M13 = M23, and Z = 0 otherwise.

This particular protocol is the special case of k = 2 and p = 3 in the above general

protocol. Thus the cardinality of the randomness set is |M12| = 6 (log2 6 bits) and the

cardinality of the message alphabets are |M13| = |M23| = 3 (log2 3 bits).

2.3 Information Theoretic Bounds for General Functions

The authors in [4] have used information theoretic methods to obtain lower bounds

on the communication and randomness for three-party secure computation of general

functions. That work considers interactive (multi-round) protocols where each party has

access to private randomness as well. General functions are considered over any finite

input alphabets X and Y. The function is allowed to be randomized, i.e. Z is specified

by a probability distribution pZ|XY (z|x, y). Each user has a block of inputs Xn ∈ X n

and Y n ∈ Yn. Thus the correctness condition here means that the output Zn should be

distributed according to
∏n
i=1 pZ|XY (zi|xi, yi).

The main result of [4] uses the residual information between pairs of X, Y and Z to

derive progressively tighter lower bounds under tighter assumptions on the function. The

tightest set of bounds derived for the entropies of the messages H(M12), H(M13) and

H(M23) (which will be used for the AND function in the following sections of this thesis),

is when the input distribution pXY has full support and the characteristic bipartite graph

of the distributions pXY , pY Z and pZX are connected. The AND function satisfies the

latter condition if the former is true.

These lower bounds when evaluated for the AND function, where X = Y = {0, 1} and

Z = X ∧ Y , give

H(M13) ≥ log2 3 H(M23) ≥ log2 3 H(M12) ≥ 1.826 (2.3)

While the lower bounds for H(M13) and H(M23) are achieved by the FKN protocol, the

lower bound for H(M12) is not achieved (the protocol uses H(M12) = log2 6 ≈ 2.585).

Contents 10

This leaves the question open, of whether this lower bound is tight for the AND function

or not. This question is analyzed in [5] and in this project.

2.4 Randomness Lower Bound for Non-interactive Secure

Computation of AND Without Private Randomness

The work in [5], in a way, extends from [4]. In particular, they prove that log2 6 is a

tight lower bound for H(M12) when the FKN protocol is used (non-interactive protocol

where parties do not use private randomness). They start by showing that the cardinality

|M12| ≥ 6 using the bounds derived for AND in [4], and a counting argument.

When Alice and Bob do not use private randomness, M13 and M23 are deterministic

functions of M12, X and Y : M13 = m13(M12, X), M23 = m23(M12, Y). The lower bound

H(M13) ≥ log2 3 means that |supp(M13)| ≥ 3, where supp(X) denotes the support of

the random variable X, i.e. {x ∈ X : pX(x) > 0}. The lower bound for |M12| is derived

using the following properties of a secure protocol, mentioned in Section 1.3:

1. f(1, 0) 6= f(1, 1) : For Charlie to compute Z with zero probability of error, we

require supp((M13,M23)|XY = 10) and supp((M13,M23)|XY = 11) to be disjoint.

(Correctness)

2. f(0, 0) = f(0, 1) : For Charlie to not distinguish between the inputs (0, 0) and

(1, 0), we require supp((M13,M23)|XY = 00) = supp((M13,M23)|XY = 01). (Se-

crecy)

Fix M12 = m12 and let a = m13(m12, 0), b = m23(m12, 0) and b′ = m23(m12, 1).Then:

[a, b] ∈ supp((M13,M23)|XY = 00)

[a, b′] ∈ supp((M13,M23)|XY = 01)

From property 1, b 6= b′ and from property 2,

[a, b′] ∈ supp((M13,M23)|XY = 00)

Since a appears as [a, b] and [a, b′] in supp((M13,M23)|XY = 00), there exists m′12 ∈M12

such that a = m13(m
′
12, 0). Thus, for every element a ∈ supp(M13|X = 0), there are at

least two elements inM12. Further from property 2, supp(M13|X = 0) = supp(M13|X =

1) = supp(M13). This gives the lower bound

|M12| ≥ 2|supp(M13)| ≥ 6 (2.4)

Contents 11

In a similar manner, the lower bound H(M12) ≥ log2 6 is shown for the same class of

protocols. In particular, for a given x ∈ X , let S ⊆ Y such that f(x, y) = f(x, y′) for all

y, y′ ∈ S. Then

H(M12) ≥ H(M13|X = x) + log2 |S| (2.5)

For AND, by choosing x = 0 and S = {0, 1}, this evaluates to H(M12) ≥ log2 6.

Thus, the FKN protocol for three-party secure computation of AND is optimal in both

communication and randomness when we restrict to non-interactive protocols without

private randomness. The authors in [5] left this question open, as to whether using

private randomness could help reduce H(M12) or |M12| used in the protocol. This

question will be answered in this project. In fact, they provide an example where this

can be done. This example is discussed in the next section.

2.5 Example of a Protocol with Private Randomness

This function is an example where lesserH(M12) can be used when the parties use private

randomness, than when they do not. Consider the following function with X,Y ∼
Unif{0, 1, 2} :

f(X,Y) =

2 if X = 2 or Y = 2

X ⊕ Y otherwise

Using the bounds from [4], it can be shown that H(M13) ≥ 2.3137 and H(M23) ≥ 2.3137.

Further using the bound in 2.5, we get H(M12) ≥ 3.8987. However, there exists a

protocol (shown below) given in [5] which uses private randomness by both Alice and

Bob, and achieves H(M13) = H(M23) = log2 3 + 1 ≈ 2.5850 and H(M12) = log2 6 +

1 ≈ 3.5850. Thus, using private randomness has the potential to lower the amount

of communication on the 1-2 link. In the next chapter, we will show that for secure

computation of AND, using private randomness cannot reduce |M12| below 6.

Protocol 2.3. Protocol using private randomness (k′ and k′′ are drawn from Alice’s

and Bob’s private randomness)

1. M12 contains a uniformly chosen permutation of (0, 1, 2), say (α, β, γ) and a uni-

form bit k.

2. Alice sends M13 = (α,X ⊕ k) if X ∈ {0, 1}, and (β, k′) if X = 2.

3. Bob sends M23 = (α, Y ⊕ k) if Y ∈ {0, 1}, and (γ, k′′) if Y = 2.

4. Charlie finds Z = 2 if M13(1) = M23(1), and Z = M13(2)⊕M23(2) otherwise.

Chapter 3

Randomness Lower Bounds

Derived in This Project

In this chapter, we consider the three-party secure computation model for the AND

function. We examine the lower bound |M12| ≥ 6 that was shown in [4] and recapit-

ulated in Section 2.4. That proof considered non-interactive protocols without private

randomness. In this proof, we allow the parties to use private randomness and then

examine if |M12| ≥ 6 is necessary for a perfectly secure protocol.

3.1 Randomness Lower Bound When Only One Party Uses

Private Randomness

Theorem 3.1. When only one party uses private randomness, |M12| ≥ 6 for a non-

interactive three-party secure computation protocol for AND.

Proof : Suppose only Bob is allowed private randomness, M13 is a deterministic function

of M12 and X, while M23 is chosen from a probability distribution pM23|M12Y . Thus for

each value of M12 and Y , there is a distribution from which Bob chooses M23.

Fix M12 = m12 and let a = m13(m12, 0). Let

b ∈ supp(M23|Y = 0,M12 = m12)

b′ ∈ supp(M23|Y = 1,M12 = m12)

12

Contents 13

be representative elements of the distributions that they are chosen from. From property

1 in Section 2.4, b 6= b′, and from property 2,

[a, b′] ∈ supp((M13,M23)|XY = 00)

The same argument used in Section 2.4 can be continued here. Since a appears as [a, b]

and [a, b′] in supp((M13,M23)|XY = 00), for every element a in supp(M13|X = 0), there

exists m12,m
′
12 ∈ M12 such that a = m13(m12, 0) = m13(m

′
12, 0). Since supp(M13|X =

0) = supp(M13|X = 1) = supp(M13), we get the same bound

|M12| ≥ 2|supp(M13)| ≥ 6 (3.1)

Since Alice and Bob are equivalent in this protocol, the same can be said about private

randomization by Alice. Thus private randomization by one party alone does not reduce

the amount of shared randomness required.

3.2 Randomness Lower Bound When Both Parties Use

Private Randomness

When both Alice and Bob can use private randomness, the above argument does not

hold directly. However, a more general approach can be still used to show that a size of

less than 6 forM12 cannot satisfy secrecy and correctness, by using a counting argument

based on the support sets of M13 and M23 under various inputs.

Theorem 3.2. When both parties are allowed to use private randomness, |M12| ≥ 6

for a non-interactive three-party secure computation protocol for AND.

Proof :

Setup of the proof

The two conditions for correctness and secrecy (given in Section 2.4) continue to hold

as follows:

1. Correctness requires that

supp((M13,M23)|XY = 10) ∩ supp((M13,M23)|XY = 11) = Φ (3.2)

Contents 14

In this case, we can equivalently say that

supp((M13,M23)|XY = 10,M12 = m1)∩supp((M13,M23)|XY = 11,M12 = m2) = Φ

(3.3)

for any m1,m2 ∈M12.

2. Secrecy requires that

supp((M13,M23)|XY = 00) = supp((M13,M23)|XY = 01) = supp((M13,M23)|XY = 10)

(3.4)

We will use the notation Axm to denote supp(M13|X = x,M12 = m) and By
m to denote

supp(M23|Y = y,M12 = m) for x, y ∈ {0, 1} andm ∈M12. Thus supp((M13,M23)|XY =

xy,M12 = m)) = Axm ×B
y
m which is denoted by AxmB

y
m.

The approach used will be to construct the protocol by listing AxmB
y
m for each value of

m, x and y while satisfying conditions 1 and 2 above. This is done in Table 3.1. Each

row represents a combination of inputs X and Y and each column represents an element

of M12. Elements of M12 are indexed as 1,2, and so on. Each cell shows the support

set supp((M13,M23)|XY = xy,M12 = m)) = AxmB
y
m.

Corresponding to the two conditions given above, we have to fulfill these two objectives

while filling the table.

1. According to condition 1 above, each of the sets in the first 3 rows of the table are

disjoint from each of the sets in the last row.

2. According to condition 2, all elements of the sets in row 1 must also be present in

the sets in rows 2 and 3 (similarly for rows 2 and 3).

M12 = 1 M12 = 2 M12 = 3 M12 = 4 M12 = 5 M12 = 6

XY = 00 A0
1B

0
1 A0

2B
0
2 A0

3B
0
3 A0

4B
0
4 A0

5B
0
5 A0

6B
0
6

XY = 01 A0
1B

1
1 A0

2B
1
2 A0

3B
1
3 A0

4B
1
4 A0

5B
1
5 A0

6B
1
6

XY = 10 A1
1B

0
1 A1

2B
0
2 A1

3B
0
3 A1

4B
0
4 A1

5B
0
5 A1

6B
0
6

XY = 11 A1
1B

1
1 A1

2B
1
2 A1

3B
1
3 A1

4B
1
4 A1

5B
1
5 A1

6B
1
6

Table 3.1: Table for construction of secure AND protocol

We will observe which sets of messages cannot occur in the same cell as they would

violate objective 1 if they did so. We will fill elements in the table so as to satisfy

Contents 15

objective 2. In this way, we can demonstrate that any cardinality |M12| < 6 cannot

satisfy objectives 1 and 2. To do this, we fill Table 3.1 by giving each support set a

unique name. We will then impose the relations that these sets have among each other.

Assumptions

Without loss of generality we fill the first column of Table 3.1 with arbitraryA0
1, A

1
1, B

0
1 , B

1
1 .

Note that A0
1 and A1

1 are disjoint and B0
1 and B1

1 are disjoint. To begin with, we

at least need 1 bit of randomness to ensure secrecy, so there are at least

2 columns in the table. If we wish to have |M12| = 2, then for M12 = 2, we

need A0
1B

1
1 ⊆ A0

2B
0
2 and A1

1B
0
1 ⊆ A0

2B
0
2 to fulfill objective 2. Thus A0

1, A
1
1 ⊆ A0

2 and

B0
1 , B

1
1 ⊆ B0

2 This would mean that A1
1B

1
1 ⊆ A0

2B
0
2 which violates objective 1. Thus we

need more than 2 elements in M12.

We will prove that a size of |M12| ≤ 5 cannot satisfy objectives 1 and 2 together. Since

the sets A0
1B

1
1 and A1

1B
0
1 must appear in Row 1, We begin by assuming without loss of

generality that

A1
1 ∩A0

2 6= Φ B0
1 ∩B0

2 6= Φ A0
1 ∩A0

3 6= Φ B1
1 ∩B0

3 6= Φ (3.5)

This further implies (to satisfy objective 1), that

B1
1 ∩B0

2 = Φ B1
1 ∩B1

2 = Φ A1
1 ∩A0

3 = Φ A1
1 ∩A1

3 = Φ (3.6)

Constraints on splitting the sets among multiple columns

With respect to the next two columns (4 and 5), consider the following cases:

1. If A1
1 ∩A0

4 = A1
1 ∩A0

5 = Φ, then we require that A1
1 ⊆ A0

2 and B0
1 ⊆ B0

2 . Therefore

B0
1 ∩B1

2 = Φ. These conditions along with (3.6) will prevent A1
1B

0
1 from appearing

in row 2. A similar contradiction can be shown when B1
1 ∩ B0

4 = B1
1 ∩ B0

5 = Φ.

This case also shows us that |M12| ≤ 4 cannot be possible, because if we

have less than 5 columns, we can consider the extra columns with empty sets.

2. If A1
1 ∩ A0

4 6= Φ, A1
1 ∩ A0

5 6= Φ, this implies B1
1 ∩ B0

4 = B1
1 ∩ B0

5 = Φ which

is already contradicted in case 1. A similar contradiction can be shown when

B1
1 ∩B0

4 6= Φ, B1
1 ∩B0

5 6= Φ.

3. Cases 1 and 2 tell us that exactly one of A1
1 ∩A0

4 and A1
1 ∩A0

5 is empty. Similarly,

exactly one of B1
1 ∩ B0

4 and B1
1 ∩ B0

5 is empty. Without loss of generality again,

Contents 16

let us assume:

A1
1 ∩A0

4 6= Φ A1
1 ∩A0

5 = Φ B1
1 ∩B0

4 = Φ B1
1 ∩B0

5 6= Φ (3.7)

From (3.5)-(3.7) and objective 2, we know that A1
1B

0
1 ⊆ A0

2B
0
2∪A0

4B
0
4 . Thus the elements

of A1
1B

0
1 may be split among A0

2B
0
2 and A0

4B
0
4 . We will show that at most one of A1

1 or

B0
1 can be split into two non-full subsets across the two columns. Let

A1
1 ∩A0

2 = δA1
1 A1

1 ∩A0
4 = δ′A1

1 B0
1 ∩B0

2 = δB0
1 B0

1 ∩B0
4 = δ′B0

1 (3.8)

where δS and δ′S denote non-full subsets of the set S, such that δS ∪ δ′S = S. Then we

can see that there would be elements in δA1
1δ
′B0

1 and δ′A1
1δB

0
1 which are not covered by

A0
2B

0
2 ∪A0

4B
0
4 . More generally, we may allow δ′A1

1 and δB0
1 to be equal to their full sets,

and yet there will exist elements in (A1
1 \ δA1

1)(B
0
1 \ δ′B0

1) which won’t be covered. The

remaining possible cases for the distribution of elements of A1
1B

0
1 and A0

1B
1
1 in the first

row are shown in Table 3.2, where δ and δ′ have the same meaning as described above.

(a) (b)

(i) A1
1 ∩A0

2 = δA1
1, A

1
1 ∩A0

4 = δ′A1
1 B1

1 ∩B0
3 = δB1

1 , B
1
1 ∩B0

5 = δ′B1
1

(ii) B0
1 ∩B0

2 = δB0
1 , B

0
1 ∩B0

4 = δ′B0
1 A0

1 ∩A0
3 = δA0

1, A
0
1 ∩A0

5 = δ′A0
1

(iii) A1
1 ⊆ A0

2, B
0
1 ⊆ B0

2 A0
1 ⊆ A0

3, B
1
1 ⊆ B0

3

(iv) A1
1 ⊆ A0

4, B
0
1 ⊆ B0

4 A0
1 ⊆ A0

5, B
1
1 ⊆ B0

5

Table 3.2: Exhaustive cases for distribution of the elements of A1
1B

0
1 and A0

1B
1
1 in

row 1

Exhaustive analysis of all possible assignments

Now, we shall prove that each of the cases in Table 3.2 will fail to satisfy objectives 1

and 2.

1. Case (a)(i) : To cover all elements of A0
1B

1
1 in row 1, we need

δA1
1, δ
′A1

1 6= Φ B0
1 ⊆ B0

2 , B
0
1 ⊆ B0

4

=⇒ B0
1 ∩B1

2 = B0
1 ∩B1

4 = Φ

Using this result, (3.6) and (3.7), A1
1B

0
1 cannot appear in row 2. Case (b)(i) can

be disproved in the same manner.

Contents 17

2. Case (a)(ii) and (b)(ii) together : To cover all elements of A0
1B

1
1 and A1

1B
0
1

in row 1, we need

δB0
1 , δ
′B0

1 6= Φ A1
1 ⊆ A0

2, A
1
1 ⊆ A0

4

δA0
1, δ
′A0

1 6= Φ B1
1 ⊆ B0

3 , B
1
1 ⊆ B0

5

=⇒ A1
1 ∩A1

2, A
0
3, A

1
3, A

1
4, A

0
5, A

1
5 = Φ B1

1 ∩B0
2 , B

1
2 , B

1
3 , B

0
4 , B

1
4 , B

1
5 = Φ

where some of the disjointness conditions come from the assumptions in (3.6) and

(3.7), while the others hold for this case. Using these restrictions, we observe that

the only possible assignment to cover the following subsets is as follows:

A1
1B

0
1 in row 2 =⇒ δ′B0

1 ⊆ B1
2 , δB

0
1 ⊆ B1

4

A0
1B

1
1 in row 3 =⇒ δ′A0

1 ⊆ A1
3, δA

0
1 ⊆ A1

5

A0
1B

0
1 in row 2 =⇒ A0

1 ⊆ A0
2, A

0
1 ⊆ A0

4

A0
1B

0
1 in row 3 =⇒ B0

1 ⊆ B0
3 , B

0
1 ⊆ B0

5

=⇒ A1
2 ∩A0

1, A
1
1 = Φ

The last condition comes due to objective 1, and means that A1
2 contains fresh el-

ements that have not been seen before in A0
1 or A1

1 (since A1
2 must be non-empty).

However A1
2δB

0
1 cannot appear anywhere in row 1 since A1

2δ
′B0

1 must not appear

in row 1.

3. Case (a)(ii) and (b)(iii) together : To cover all elements of A0
1B

1
1 and A1

1B
0
1

in row 1, we need

δB0
1 , δ
′B0

1 6= Φ A1
1 ⊆ A0

2, A
1
1 ⊆ A0

4 A0
1 ⊆ A0

3, B
1
1 ⊆ B0

3

=⇒ A1
1 ∩A1

2, A
0
3, A

1
3, A

1
4, A

0
5, A

1
5 = Φ B1

1 ∩B0
2 , B

1
2 , B

1
3 , B

0
4 , B

1
4 = Φ

From the assumptions in (3.5)-(3.7) and the above conditions, we have the following

assignments:

A1
1B

0
1 in row 2 =⇒ δ′B0

1 ⊆ B1
2 , δB

0
1 ⊆ B1

4

=⇒ A1
2 ∩A0

1 = A1
2 ∩A1

1 = Φ

A0
1B

1
1 in row 3 =⇒ A0

1 ⊆ A1
5, B

1
1 ⊆ B0

5

A0
1B

0
1 in row 3 =⇒ B0

1 ⊆ B0
5

A1
2δB

0
1 in row 1 =⇒ A1

2 ⊆ A0
3, δB

0
1 ⊆ B0

3

A1
2δB

0
1 in row 2 =⇒ A1

2 ⊆ A0
3, δB

0
1 ⊆ B1

3

Contents 18

However the last assignment is a contradiction since we require B0
3 ∩B1

3 . We can

use a similar proof when case (iii) is replaced by (iv) or when (a) and (b) are

interchanged.

4. Case (a)(iii) and (b)(iii) together : From the assumptions (3.5)-(3.7) and the

assumptions for this case, we get:

B1
2 ∩B0

1 = Φ, B1
2 ∩B1

1 = Φ

A1
3 ∩A0

1 = Φ, A1
3 ∩A1

1 = Φ

A2B
0
1 in row 2 =⇒ A1

1 ⊆ A0
4, B

0
1 ⊆ B1

4

A6B
1
1 in row 2 =⇒ A1

3 ⊆ A0
5, B

1
1 ⊆ B1

5

However the last assignment is a contradiction since we require B0
5 ∩B1

5 . We can

use a similar proof when case (iii) is replaced by (iv) and when (a) and (b) are

interchanged.

One can verify now that all possible assignments of the elements of A0
1B

1
1 and A1

1B
0
1 in

the first row have been contradicted above. (This can be done easily by seeing that each

of the δ and δ′ subsets defined above can be the full set or not the full set, and the above

considered cases account for all 16 of those possibilities). Thus, we have shown through

a counting argument that a common randomness of size |M12| ≤ 5 does not suffice for

this problem. Since we know that a protocol exits with |M12| = 6, we can give the tight

lower bound |M12| ≥ 6.

3.3 Entropy Lower Bound When Both Parties Use Private

Randomness

In the previous section, we established the cardinality bound |M12| ≥ 6 for a perfectly

secure three-party secure computation protocol with private randomness for both users.

This does not directly establish the entropy bound H(M12) ≥ log2 6 under the same

circumstances.

In a manner similar to how (2.5) was shown in [5], the following entropy bound is

developed. We consider secure computation of an arbitrary function f(x, y) with x ∈ X
and y ∈ Y.

Theorem 3.3. Let x ∈ X and Sx ⊆ Y such that f(x, y) = f(x, y′) for all y, y′ ∈ Sx.

Then

H(M12) ≥ I(M12;M13|X = x) + log2 |Sx| (3.9)

Contents 19

Proof : Let x ∈ X , Sx = {y1, . . . y|Sx|}, andm12 ∈M12 such that [a, bi] ∈ supp((M13,M23)|M12 =

m12, X = x, Y = yi). Because we have private randomness and a non-interactive proto-

col, M13 or M23 are given by distributions

Pr(m13,m23|m12, x, y) = Pr(m13|m12, x)Pr(m23|m12, y) (3.10)

Because of the condition for security, the distribution of the messages should be identical

for all (x, yi) such that yi ∈ S. Thus,

Pr(M13 = a,M23 = bi|X = x, Y = yi) = Pr(M13 = a,M23 = bi|X = x, Y = y1) (3.11)

=⇒ [a, bi] ∈ supp((M13,M23)|X = x, Y = y1) (3.12)

Denote supp(M23|M12 = m12, Y = yi) as Bi

Pr(M13 = a|X = x) = Pr(M13 = a|X = x, Y = y1)

(a)

≥
|Sx|∑
i=1

∑
b∈Bi

Pr(M13 = a,M23 = b|X = x, Y = y1)

(b)
=

|Sx|∑
i=1

∑
b∈Bi

Pr(M13 = a,M23 = b|X = x, Y = yi)

=

|Sx|∑
i=1

∑
b∈Bi

∑
m∈M12

Pr(M12 = m)Pr(M13 = a|X = x,M12 = m)Pr(M23 = b|Y = yi,M12 = m)

(c)

≥
|Sx|∑
i=1

∑
b∈Bi

Pr(M12 = m12)Pr(M13 = a|X = x,M12 = m12)Pr(M23 = b|Y = yi,M12 = m12)

(d)
= |Sx| Pr(M12 = m12)Pr(M13 = a|X = x,M12 = m12)

where (a) is by marginalizing over all b in Bi, (b) is from (3.11), (c) is by assumption

that [a, bi] ∈ supp((M13,M23)|M12 = m12, X = x, Y = yi), and (d) is by marginalizing

over all b in Bi = supp(M23|M12 = m12, Y = yi). Therefore we get the following, which

we shall represent with a shorthand notation for the future

Pr(M12 = m12) ≤
Pr(M13 = a|X = x)

|Sx| Pr(M13 = a|X = x,M12 = m12)

p(m12) ≤
p(a|x)

|Sx| p(a|m12, x)
(3.13)

Contents 20

whenever a ∈ supp(M13|M12 = m12, X = x). We proceed to bound the entropy as

follows. Denote supp(M13|M12 = m,X = x) as A(m,x) and supp(M13|X = x) as A(x)

H(M12) =
∑

m∈M12

p(m) log2

(
1

p(m)

)
=

∑
m∈M12

∑
a∈A(m,x)

p(a|m,x)p(m) log2

(
1

p(m)

)
(a)

≥
∑

m∈M12

∑
a∈A(m,x)

p(a|m,x)p(m) log2

(
|Sx| p(a|m,x)

p(a|x)

)

=
∑

a∈A(x)

∑
m∈M12

p(a|m,x)p(m) log2

(
|Sx|
p(a|x)

)
−

∑
m∈M12

∑
a∈A(m,x)

p(a|m,x)p(m) log2

(
1

p(a|m,x)

)

= log2 |Sx|+
∑

a∈A(x)

p(a|x) log2

(
1

p(a|x)

)
−

∑
m∈M12

p(m)H(M13|M12 = m,X = x)

= log2 |Sx|+H(M13|X = x)−H(M13|M12, X = x)

= I(M12;M13|X = x) + log2 |Sx|

where (a) is from (3.13), and the rest follow from the usual properties of entropy, which

completes the proof.

Notice that in the absence of private randomness, I(M12;M13|X = x) = H(M13|X = x)

and thus we get the bound in (2.5). With private randomness, this can be a lower

number. Since (3.9) holds for any choice of x ∈ X , we can say

H(M12) ≥ max
x∈X

I(M12;M13|X = x) + log2 |Sx| (3.14)

For the AND function choosing x = 0 with Sx = {0, 1}, we get

H(M12) ≥ I(M12;M13|X = x) + 1 (3.15)

We can evaluate the term in (3.9) for the protocol with private randomness, mentioned

in Section 2.5. For the given protocol,

H(M13|X = x) = log2 6 for any x ∈ {0, 1, 2}

H(M13|M12, X = x) = log2 2 if x = 2

|Sx| = 3 if x = 2

Contents 21

Using this, we get H(M12) ≥ log2 9. The protocol however uses H(M12) = log2 12.

We note that while the term in (3.9) is a correct bound for protocols with private

randomness, it is not clear how to evaluate it without knowing the protocol a priori.

3.4 Relation with Distribution Design

Distribution design is a problem that has been studied in [6]. In this problem, the goal is

to design a joint distribution on a set of random variables X1, . . . , Xn, such that a set of

constraints are satisfied. It is of interest to study the minimum cardinality of the random

variables required to satisfy these constraints. The constraints on the distribution may

be of two types. Consider two sets of random variables of size d, (Xi1 , . . . , Xid) and

(Xi′1
, . . . , Xi′d

). The first type of constraint is that the two sets of random variables are

identically distributed, i.e. they have the same joint distribution (denoted by ≡). The

second type of constraint is that the two sets of random variables are disjoint, i.e. their

supports are disjoint (denoted by ‖).

The problem of distribution design was motivated from many cryptographic applica-

tions, including secret sharing, garbling schemes, and secure multiparty computation.

Here, we show how this problem can be used to derive bounds for secure multiparty

computation. In the three-party secure computation of AND, consider the random vari-

ables (M0
13,M

1
13,M

0
23,M

1
23), where M0

13 is the message M13 sent by Alice when her input

X is 0. Corresponding to the security conditions for AND (given in Section 1.3), we

have the following constraints:

(M0
13,M

0
23) ≡ (M0

13,M
1
23) ≡ (M1

13,M
0
23)

(M1
13,M

1
23) ‖ (M0

13,M
0
23) (M1

13,M
1
23) ‖ (M0

13,M
1
23) (M1

13,M
1
23) ‖ (M1

13,M
0
23)

(3.16)

We use the following lemma from [6]. In terms of notations, consider the given set of ran-

dom variables indexed by [n] = {1, . . . , n}. Share size denotes maxi∈[n]dlog2 |supp(Xi)|e.
A distribution design is d-symmetric if all permutations of (Xi1 , . . . , Xid) are identically

distributed, for all such sets of d random variables. A distribution design is (d-1)-secret

if (Xi1 , . . . , Xit) ‖ (Xi′1
, . . . , Xi′t

) for any two such sets of t ≤ d− 1 random variables.

Lemma 3.4. Let A0 ⊆ [n] be a set of size 1 < d < n and consider the constraints

RA0 = {A ‖A0 : , A ⊆ [n], |A| = d,A 6= A0} ∪ {A ≡ A′ : A,A′ ⊆ [n], |A| = |A′| =

d,A,A′ 6= A0}. Then there exists a d-symmetric (d-1)-secret distribution design for

RA0 with share size at most min{2d · log2 n, n− 1}.

Contents 22

The proof of this lemma in [6] also outlines the construction of the distribution design.

For our problem of three-party secure computation of AND, we have n = 4 and d = 2

with A0 = {M1
13,M

1
23} according to (3.4), and this lemma guarantees the existence of a

distribution design for this problem with |supp(M13)| and |supp(M23)| at most 23 (since

supp(M13) = supp(M0
13) = supp(M1

13)). For the multiparty setting, n = 2k and d = k

and this lemma gives us that |supp(Mi)| is at most 22k−1 for i = 1, . . . , k.

We find that this lemma for distribution design gives an upper bound of 2O(k) for

|supp(Mi)| but for AND we have a protocol which achieves O(k). Observe that in

the case of three-party secure computation, the constraints used to evaluate Lemma

3.4 include extra constraints of the form (M0
13,M

1
13) ‖ (M1

13,M
1
23), and (M0

13,M
1
13) ≡

(M0
13,M

0
23). Both of these forms of constraints do not make sense in the context of our

problem. Further, the proposed construction may not be optimal in terms of the share

sizes.

Clearly, the problem of finding distributions of messages for secure multiparty compu-

tation is closely related to distribution design. In fact, secure multiparty computation

of any binary output function can be posed as a distribution design problem. It is

therefore of interest to study the problem of distribution design also, to give answers for

both these problems. In the multiparty setting, let the input of each of the k parties be

Xi ∈ Xi, i = 1, . . . , k and the function f : X1 × . . . × Xk → {0, 1}. Choose the random

variables {Mx
i : x ∈ Xi, i = 1, . . . , n}. The constraints are of the form

(Mx1
1 , . . . ,Mxk

k) ≡ (M
x′1
1 , . . . ,M

x′k
k) if f(x1, . . . , xk) = f(x′1, . . . , x

′
k)

(Mx1
1 , . . . ,Mxk

k) ‖ (M
x′1
1 , . . . ,M

x′k
k) if f(x1, . . . , xk) 6= f(x′1, . . . , x

′
k) (3.17)

Chapter 4

Conclusion and Future Work

Secure multiparty computation is a problem with several relevant applications. How-

ever most of the currently known theoretical guarantees are not tight in general. This

project studied a specific case of secure multiparty computation, for the function AND.

In particular, this project showed that the randomness bounds derived for secure com-

putation of AND, are tight under a larger class of protocols. Further, this project links

the problem of secure multiparty computation of functions to another problem, that is

distribution design.

While the bounds presented in this project are tight for the AND function, it is of

interest to look at more generic bounds that can extend to other functions as well. In

particular, the method used for this proof may be made more systematic and general.

Further future work is in deriving information theoretic communication and randomness

bounds. This involves finding how to evaluate the bound presented in (3.3) in terms of

the inputs of the function, and extending the bounds in [4] to the multiparty setting.

Finally, it has been established that the secure multiparty computation problem can be

formulated as a distribution design problem. The format in which this has been formu-

lated does not explicitly use the common randomness variables. Thus the constraints in

the distribution design problem may be modified to the context of this problem. We can

also consider a variation of distribution design, that we can call support design. Here

we are interested only in designing the support sets of the distribution, thus getting car-

dinality bounds on the random variables. As a support design problem, the constraints

will be of the form as in (3.2)-(3.4).

23

Bibliography

[1] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation

(extended abstract). In Proceedings of the Twenty-sixth Annual ACM Symposium

on Theory of Computing, STOC ’94, pages 554–563, New York, NY, USA, 1994.

ACM. ISBN 0-89791-663-8. doi: 10.1145/195058.195408. URL http://doi.acm.

org/10.1145/195058.195408.

[2] R Cramer, I.B. Damg̊ard, and J.B. Nielsen. Secure multiparty computation and secret

sharing. 01 2015. doi: 10.1017/CBO9781107337756.

[3] Rafi Heiman. Secure audio teleconferencing: A practical solution. In Rainer A. Ruep-

pel, editor, Advances in Cryptology — EUROCRYPT’ 92, pages 437–448, Berlin,

Heidelberg, 1993. Springer Berlin Heidelberg. ISBN 978-3-540-47555-2.

[4] Deepesh Data, Vinod M. Prabhakaran, and Manoj M. Prabhakaran. Communication

and randomness lower bounds for secure computation. CoRR, abs/1512.07735, 2015.

URL http://arxiv.org/abs/1512.07735.

[5] Sundara Rajan S, S. Rajakrishnan, A. Thangaraj, and V. Prabhakaran. Lower

bounds and optimal protocols for three-party secure computation. In 2016 IEEE In-

ternational Symposium on Information Theory (ISIT), pages 1361–1365, July 2016.

doi: 10.1109/ISIT.2016.7541521.

[6] Amos Beimel, Ariel Gabizon, Yuval Ishai, and Eyal Kushilevitz. Distribution design.

In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer

Science, ITCS ’16, pages 81–92, New York, NY, USA, 2016. ACM. ISBN 978-1-

4503-4057-1. doi: 10.1145/2840728.2840759. URL http://doi.acm.org/10.1145/

2840728.2840759.

24

http://doi.acm.org/10.1145/195058.195408
http://doi.acm.org/10.1145/195058.195408
http://arxiv.org/abs/1512.07735
http://doi.acm.org/10.1145/2840728.2840759
http://doi.acm.org/10.1145/2840728.2840759

	Abstract
	1 Introduction
	1.1 Secure Computation - Introduction
	1.2 Three-Party Secure Computation - Problem Definition
	1.3 The FKN Protocol
	1.4 Multiparty Secure Computation - Extending the FKN Protocol
	1.5 Applications of Secure Multiparty Computation

	2 Literature Study
	2.1 Existence of Secure Computation Protocols
	2.2 FKN Protocol for Secure Computation of AND
	2.3 Information Theoretic Bounds for General Functions
	2.4 Randomness Lower Bound for Non-interactive Secure Computation of AND Without Private Randomness
	2.5 Example of a Protocol with Private Randomness

	3 Randomness Lower Bounds Derived in This Project
	3.1 Randomness Lower Bound When Only One Party Uses Private Randomness
	3.2 Randomness Lower Bound When Both Parties Use Private Randomness
	3.3 Entropy Lower Bound When Both Parties Use Private Randomness
	3.4 Relation with Distribution Design

	4 Conclusion and Future Work

